

Journal of Innovation, Technology and Sustainability
2023, Vol. 1, Issue 1, 42-67

A comparative study of the lexicographical complexity of Java,
Python and C languages based on program characteristics

Kevin Agina Onyango1

Jackson Kamiri1

Geoffrey Muchiri Muketha1

1Murang’a University of Technology, Kenya

Abstract

In software engineering, software complexity measures how complicated it is to design, test,
maintain, and comprehend a system or a program. Metrics have been appreciated over time as
a measure of various attributes of software products. Some of the most well-known languages
for scientific, object-oriented, and imperative programming are Python, Java, and C,
respectively. However, it is not easy to distinguish the structural complexity of these
programming languages and the existing studies have overlooked this issue. This study,
therefore, uses a technique based on Halstead Software Science to conduct a comparative
investigation to evaluate the lexicographical complexity of sequence, selection, and looping
program structures in object-oriented, scientific, and imperative programming languages.
Halstead Complexity Metrics were implemented utilizing sequence, selection, and loop control
structures in Java, C, and Python to accomplish the study's goal. When subjected to the Halstead
software science comprising of nine measurement criteria, the findings of the experiment
demonstrated that in sequence and Loops program structures C language has the highest
lexicographical complexity followed by Java, while in Selection program structures Java is more
slightly complex than C. Python on the other hand, had the least lexicographical complexity
across all three essential program structures—sequence, selection, and loops during the
comparative study, therefore, it is the most appropriate programming language among the
three that are being studied here in terms of program complexity. Using the results of this study,
we intend to use effort prediction models in the future to estimate the programming effort. We
also intend to do additional experiments with the same program structures using larger
program samples in the future. A replication of the study using different programming
languages is also suggested.

Keywords: Software Complexity, Software Metrics, Halstead Software Science, C
Programming, Java, Python

Journal of Innovation, Technology and Sustainability

43 | Vol. 1, Issue 1, 2023

1. Introduction

Software complexity is always at the center of attention of every software developer. It
explains how complex the components of systems are by defining how a particular set of
features of the systems interrelate (Vard, Miroslaw and Ann, 2017: Madhan, Dhivakar,
Anbuarasan and Thirumalai, 2017). The higher the interaction, the higher the complexity
meaning that the system is complicated making it difficult to test, modify, maintain and
understand (Mall, 2016: Johanna and Baharom, 2017).

Over the years, software development industries have proven that metrics are the best
measure of software complexity giving advisories to software developers to develop quality
software (Omri, Montag and Sinz, 2018: Horst, 2019). In software engineering, the two
widely used classical measures for evaluating software complexity are Halstead metrics and
McCabe's cyclomatic complexity metrics (Halstead, 1977: Hariprasad, Seenu, Vidhyagaran
and Tirumala, 2017). Halstead metrics examine the mathematical correlations between the
number of operands and operators in a certain code structure to assess the complexity of
software. (Govil, 2020). On the other hand, McCabe's Cyclomatic complexity metrics assess
a software's complexity by taking the code structure's control flow into account. (Fioravanti
and Nesi, 2000: Madi, Zein and Kadry, 2013).

Some of the most well-known programming languages for scientific, object-oriented, and
imperative programming are Python, Java, and C, respectively. However, it is not easy to
distinguish the structural complexity of these programming languages and the existing
studies have overlooked this issue.

This study therefore aims at evaluating the complexity of Object-Oriented, Scientific and
Imperative Programming languages based on the composition of the program structures.
Halstead metrics was considered the best metrics for the implementation since it defines the
quantifiable properties of software and how they relate to one another. Halstead metrics is
a software science that reflects how algorithms are implemented in various programming
languages. With the existence of the right tools, the metrics have been appreciated in the
effectiveness of assessing the complexity of a program's code. (Binanto, Warnars, Abbas and
Sianipar, 2018; Flatter and David, 2018; Shaikh, 2020).

The remainder of this work is structured as follows: Section 2 presents literature relevant to
the study; Section 3 discusses methodology; Section 4 presents results and discussion; and
Section 5 provides closing thoughts and suggestions for future study.

Journal of Innovation, Technology and Sustainability

44 | Vol. 1, Issue 1, 2023

2. Related Works

Halstead software science has been used in numerous types of research to assess the
complexity of various programming languages. Hariprasad et al., (2017) conducted a study
on software complexity analysis using Halstead metrics. This study used Halstead’s
technique to measure the complexity levels of a C++ program and a Python program. In their
study, the researchers conducted an experiment using the nested while... and for... loops. The
results demonstrated that C++ is more complex than Python in effort required, the number
of bugs expected, and time requirements. However, this study overlooked the complexity
evaluation of other popular programming languages like Java and C.

The complexity of a program that checks palindromes in a total of five languages namely;
JAVA, C, Python, PHP, and C++, was measured using Halstead metrics (Govil, 2020). The
study's findings in descending order are as follows: Difficulty: Java, C++, C, PHP, Python.
Effort: Java, C++, C, PHP, Python. Time: Java, C++, C, PHP, Python. Bugs delivered: C++, Java,
C, PHP, Python. In this study, the researchers only consider palindromes in the five different
programming languages. This study, therefore, overlooked other basic program structures
on sequence, selection and loops which are fundamental in the evaluation of the complexity
of a programming language.

Abdulkareem & Abboud, (2021) did a study on the evaluation of the programming languages
viz Java, C++, JavaScript, and Python using Halstead Metrics' software complexity calculator.
They conducted an experiment using Halstead metrics to measure the complexity of function
and branching structures in Java, Python, C++, and JavaScript programming languages. The
results demonstrated that Java has the highest effort requirement, difficulty, program length,
volume, truth program length, estimated program length and program time while Python
had the least effort requirement. This study only considered the branching program
structure of these programming languages overlooking other program structures such as
sequences and loops which are essential in the contribution of the software complexity
evaluation process.

Yu and Zhou, (2010) conducted a study on a survey on metrics for software complexity, in
their study they noted that software complexity measurement has become an important part
of software engineering. Lines of Code (LOC), Halstead Complexity measurements, and
Cyclomatic Complexity Metrics are a few of the traditional and effective software complexity
measurements, according to this survey. This study though did not implement any
complexity evaluation of any programming language, the study only focused on the survey
and presentation of these metrics.

Binanto et. al., (2018) developed an automation tool using Python programming language.
The analyzer tool is used for the automation processing of Halstead metrics application
results. The tool can get operands and operators faster than manual computation. However,

Journal of Innovation, Technology and Sustainability

45 | Vol. 1, Issue 1, 2023

there is no evidence that the tool was validated. In another separate study, (Binanto et. al.,
2018) did a study on Halstead metrics for Statcato's multiple versions' quality evaluation. In
this study, the researcher extended their work by implementing their developed tool to
analyze the Statcato software's version quality.

Alfadel et. al., (2017) did a study on the measurement of Defect Density using the Halstead
and Cyclomatic Complexity Metrics. These software measures showed correlation results
with the defect density. During the experimental design, the researchers found a linear
correlation and such empirical results were found to be statistically significant, the study
concluded that the Defect Density reported by these software measurements is consistent.

3. Methodology

According to Prabowo et. al. (2018), the Halstead technique is predicated on the notion that
an actual program is made up of operators and operands. Therefore, it is possible to
determine some software attributes, such as program length, volume, difficulty level, and
programming effort, using information about the number of operators and operands present
in a program and the frequency with which those operators and operands are used in a
program. Keep in mind that the measurement criteria generated by this technique
only approximate the actual condition and are not a statistical estimate.

Some of the terms and definitions used in this technique are:

 Operands- these are the variables and constants that a program is composed of.
 Operators- consist of any combination of symbols that could have an impact on the value

or command operand.
 The operators also include signs, arithmetic symbols (like +, -, *, and /), keywords (like

if, for, do, etc.), special symbols (like =, " ", (), ==, and! =), and names of functions.

This study used Halstead metrics to measure the Lexicographical Complexity of Object-
Oriented, Scientific, and Imperative programming languages based on program
characteristics. The programming languages used in this study are Java for Object-Oriented,
Python for Scientific, and C for Imperative programming. For each of these programming
languages, sequence structures, selection structures, and loop structures were used during
the experimental test (geeksforgeek, 2020: javatpoint, 2020 and Pawade, Metha, Shah &
Rathod, 2015).

The programs used in this paper were developed by the researchers and then tested to
ensure that they execute with no error. Java and C programs were tested in NetBeans IDE
while Python was tested in the Colab cloud-based environment (Pawade et al., 2015: James,
2017).

Journal of Innovation, Technology and Sustainability

46 | Vol. 1, Issue 1, 2023

Halstead metrics is a mathematical formulation that is used to compute software metrics.
According to Coimbra, Resende & Terra, (2018) and Abdulkareem & Abboud, (2021), the
measures included in this metric are:

Halstead metrics that can be computed from the above base measures as shown in the
equations below:

Program Vocabulary (Ƞ) = sum of unique operands and unique operators

Ƞ= Ƞ1 + Ƞ2 (1)

Length of a program (N)= total number of operators plus all operands added together

N= Ν1 + Ν2 (2)

Estimated Length Ǹ = Ƞ1 log2 (Ƞ1) + Ƞ2 log2 (Ƞ2) (3)

Truth Length = Ǹ
𝑁𝑁

 (4)

Program Volume (V)= (N1+N2) log2 (Ƞ1+ Ƞ2) or V= N log2 (Ƞ) (5)

Program Difficulty (D) = (Ƞ1/2) *(N2 / Ƞ2) (6)

Program Effort (E) = D*V (7)

Number of bugs (B)= calculating the flows available in a program

B= V/3000 (8)

Program Time (T)= it is the time required to code the program. Time is directly proportional
to effort.

T=E/18 (9)

The metrics for each of these programs and the comparison are done and discussed in the
results section.

Journal of Innovation, Technology and Sustainability

47 | Vol. 1, Issue 1, 2023

4. Results and Discussion

4.1 Computation of Lexicographical Complexity from a Sequence Program Structure

A comparison experimental test was done to compute the lexicographical complexity of
source code between Java, Python and C programming language from a simple sequence
program structure to add two integers as shown below. In this paper, we have used the same
program structure in all three programming languages. For instance, variables are declared
and initialized at the same time.

4.1.1 An Implementation in a Java Programming Language

Java was used to create a sequence program structure. To ensure that the program, as seen
in Figure 1, runs effectively, it was tested and run in the NetBeans IDE.

Figure 1: Sequence - Java Code

Tokenization of the Java code in Figure 1 has generated 5 distinct operands (Ƞ2) with a
frequency of 7 (Ν2). The distinct operator is 11 (Ƞ1) while the frequency is 20 (Ν1). Each of
the operators and operands considered in this program are summarized in Table 1.
Computation of the Halstead metrics on the Java program in Figure 1 generated the following
results; program vocabulary is 16, program length is 27, estimated length is 49.66, truth
length is 1.84, program volume is 108, program difficulty is 7.7 effort to implement is 831.6,
time to implement is 46.2 seconds while bugs delivered is equivalent to 0.0360. Table 2
shows a summary of the Halsted metrics in this program.

Journal of Innovation, Technology and Sustainability

48 | Vol. 1, Issue 1, 2023

Table 1: Operands and Operators in a Sequence- Java code

Distinct Operators (Ƞ1) Frequency
(Ν1)

Distinct
Operands (Ƞ2)

Frequency
(Ν2)

= 3 x 2

+ 2 y 2

String [] 1 sum 1

; 3 5 1

{ } 2 10 1

System.out.println() 1

Args 1 Ƞ2 = 5 Ν2 = 7

Int 2

Public static void main() 1

() 3

“ ” 1

Ƞ1 = 11 Ν1 = 20

Table 2: Halstead Results of Java Sequence- Java code

4.1.2 An Implementation in a Python Programming Language

A Python simple sequence program structure was developed to add two numbers. The
program as shown in Figure 2 was developed and tested in the Colab cloud-based
environment to ascertain that it executes successfully.

Journal of Innovation, Technology and Sustainability

49 | Vol. 1, Issue 1, 2023

Figure 2: Sequence - Python Code

The Python program in Figure 2 has 5 unique operators (Ƞ1), the frequency of operators is 7
(Ν1), 5 distinct operands (Ƞ2) and the frequency of the distinct operands is 7 (Ν2).
Computation of the Halstead metrics for the program generated the following results:
Program Vocabulary is 10, program length is 14, estimated length is 23.22, truth length is
1.66, program volume is 46.51, program difficulty is 3.5, effort to implement is 162.79, time
to implement is 9.04 seconds, and Bugs delivered are equal to 0.0155. These results have
been summarized in Tables 3 and 4 respectively.

Table 3: Operands and Operators in a Sequence- Python code

Distinct Operators (Ƞ1) Frequency
(Ν1)

Distinct
Operands (Ƞ2)

Frequency
(Ν2)

= 3 x 2

+ 1 y 2

print() 1 5 1

, 1 10 1

“ ” 1 Sum 1

Ƞ1 = 5 Ν1 = 7 Ƞ2 = 5 Ν2 = 7

Journal of Innovation, Technology and Sustainability

50 | Vol. 1, Issue 1, 2023

Table 4: Halstead Results of Sequence- Python code

4.1.3 An Implementation in a C Programming Language

The researchers used NetBeans IDE to develop a simple C program that adds and prints the
sum of two integers as shown in Figure 3.

Figure 3: Sequence - C Code

The C program in Figure 3 was tokenized and it generated 13 distinct operators (Ƞ1) with a
frequency of 23 (Ν1) and 5 distinct operands (Ƞ2) with a frequency of 9 (Ν2). When Halstead
metric was computed from this data it generated the following results; Program Vocabulary
is 18, Program Length is 32, Estimated Length is 59.72, Truth Length is 1.87, Program
Volume is 133.44, Program difficulty is 11.7, Effort to Implement is 1561.25, Time to
Implement is 86.74 seconds, and Bugs Delivered is 0.0445. Tables 5 and 6, respectively,
provide summaries of these metrics.

Journal of Innovation, Technology and Sustainability

51 | Vol. 1, Issue 1, 2023

Table 5: Operands and Operators in a Sequence- C code

Distinct Operators (Ƞ1) Frequency
(Ν1)

Distinct
Operands (Ƞ2)

Frequency
(Ν2)

= 5 5 2

; 4 10 2

Return 0 1 sum 1

%d 1 x 2

, 1 y 2

{ } 1

+ 1 Ƞ2 = 5 Ν2 = 9

“ ” 1

Int 3

printf() 1

main() 1

\n 1

() 2

Ƞ1 = 13 Ν1 = 23

Table 6: Halstead Results of Sequence - C code

Journal of Innovation, Technology and Sustainability

52 | Vol. 1, Issue 1, 2023

A comparison of the lexicographical complexity of the three programming languages of Java,
Python and C programming languages was done. The result shows that when using sequence
structures, the C programming language is the most complex for all the 9 parameters of the
Halstead metrics i.e. C has the most complex vocabulary, has the highest program length and
volume, is the most difficult to implement and requires most of the programmer’s effort. It
also requires most of the implementation time as well as producing the most bugs than Java
and Python, followed by Java then Python as summarized in Figure 4. This implies that, for
instance, a lot of programmer effort will be required when developing software using C
programming language compared to Java, while the least effort will be employed when using
Python programming language.

Figure 4: Comparative Analysis of Java, Python and C with Halstead Metric

4.2 Computation of Lexicographical Complexity from a Selection Program Structure

A comparison experimental test was done to compute the lexicographical complexity of
source code between Java, Python and C programming language from a simple branching
program structure to decide whether a student has passed or failed by accepting input as
shown below.

Journal of Innovation, Technology and Sustainability

53 | Vol. 1, Issue 1, 2023

4.2.1 An Implementation in a Java Programming Language

A selection program structure was developed using Java programming language to
recommend a student as pass if the marks entered are 50 and above and fail if the marks
entered are below 50. The program as shown in Figure 5 was tested and executed in
NetBeans IDE to make sure that it executes successfully.

Figure 5: Selection - Java Code

The Java program in Figure 5 has 12 distinct operators (Ƞ1) with a frequency of 19 (Ν1) and
5 distinct operands (Ƞ2) with a frequency of 6 (Ν2). Computation of the Halstead metrics gave
the following results; Program Vocabulary is 17, Program Length is 25, Estimated Length is
54.63, Truth Length is 2.19, Program Volume is 102.19, Program Difficulty is 7.2, Effort to
Implement is 735.77, Time to Implement 40.88 seconds, and Bugs Delivered are 0.0341. The
results of this program are summarized in Tables 7 and 8 respectively.

Table 7: Operands and Operators in a Selection- Java code

Distinct Operators (Ƞ1) Frequency (Ν1) Distinct Operands (Ƞ2) Frequency (Ν2)

{ } 4 marks 2

= 1 62 1

> 1 50 1

; 3 pass 1

if() 1 failed 1

Else 1

Journal of Innovation, Technology and Sustainability

54 | Vol. 1, Issue 1, 2023

public static void main () 1 Ƞ2 = 5 Ν2 = 6

string [] 1

Args 1

system.out.println() 2

“ ” 2

Int 1

Ƞ1 = 12 Ν1 = 19

Table 8: Halstead Results of Java Selection- Java code

4.2.2 An Implementation in a Python Programming Language

A Python simple selection program structure was developed to grade a student as either pass
or fail based on the marks entered. The program as shown in Figure 6 was developed and
tested in the Colab cloud-based environment to ascertain that it executes successfully.

Figure 6: Selection - Python Code

marks = 62
if (marks > 50):

print (“pass”)
else:

print (“fail”)

Journal of Innovation, Technology and Sustainability

55 | Vol. 1, Issue 1, 2023

The Python program in Figure 6 has 7 distinct operators (Ƞ1) with a frequency of 10 (Ν1) and
5 distinct operands (Ƞ2) with a frequency of 6 (Ν2). The Halstead metrics of the program are;
Program Vocabulary is 12, Program Length is 16, Estimated Length is 31.26, Truth Length
1.95, Program Volume is 57.36, Program Difficulty is 4.2, Effort to Implement is 240.91, Time
to Implement is 13.38 seconds, and Bugs Delivered is equal to 0.0191. Tables 9 and 10,
respectively, contain an overview of these findings.

Table 9: Operands and Operators in a Selection- Python code

Distinct Operators (Ƞ1) Frequency
(Ν1)

Distinct
Operands (Ƞ2)

Frequency
(Ν2)

= 1 marks 2

if() 1 62 1

Else 1 50 1

: 2 pass 1

> 1 fail 1

print() 2

“ ” 2 Ƞ2 = 5 Ν2 = 6

Ƞ1 = 7 Ν1 = 10

Table 10: Halstead Results of Selection - Python code

Journal of Innovation, Technology and Sustainability

56 | Vol. 1, Issue 1, 2023

4.2.3 An Implementation in a C Programming Language

NetBeans IDE was used to develop a simple selection C program that grades a student to
either pass or fail by comparing the marks entered as shown in Figure 7.

Figure 7: Selection - C Code

The C program in Figure 7 has 11 distinct operators (Ƞ1) with a frequency of 19 (Ν1) and 5
distinct operands (Ƞ2) with a frequency of 6 (Ν2). The Halstead metrics of the program are;
Program Vocabulary is 16, Program Length is 25, Estimated Length is 49.66, Truth Length
1.99, Program Volume is 100, Program Difficulty is 6.6, Effort to Implement is 660, Time to
Implement is 36.67 seconds, and Bugs Delivered is equal to 0.0333. Tables 11 and 12,
respectively, presents an overview of these findings.

Table 11: Operands and Operators in a Selection - C code

Distinct Operators (Ƞ1) Frequency
(Ν1)

Distinct
Operands (Ƞ2)

Frequency
(Ν2)

{ } 3 pass 1

= 1 fail 1

; 4 marks 2

if() 1 62 1

> 1 50 1

Else 1

return 0 1 Ƞ2 = 5 Ν2 = 6

Int 2

Journal of Innovation, Technology and Sustainability

57 | Vol. 1, Issue 1, 2023

main() 1

“ ” 2

printf() 2

Ƞ1 = 11 Ν1 = 19

Table 12: Halstead Results of Selection - C code

The lexicographical complexity analysis was done to the three programming languages of
Java, Python and C for selection program structure. Following the Halstead metrics, the
results ranked the lexicographical complexity of the three programming languages and the
outcome shows that in selection or branching program structures, Java is the most complex,
followed by C and Python is the least complex of the three in regards to the 9 Halstead
metrics. The summary of the comparative analysis for the three programming languages is
represented in a histogram as illustrated in Figure 8.

Journal of Innovation, Technology and Sustainability

58 | Vol. 1, Issue 1, 2023

Figure 8: Comparative Analysis of Java, Python and C with Halstead Metric

4.3 Computation of Lexicographical Complexity from a Loop Program Structure

A comparison experimental test was done to compute the lexicographical complexity of
source code between Java, Python and C programming language from a simple loop program
structure to print the first 10 integers using a FOR statement as shown below.

4.3.1 An Implementation in a Java Programming Language

The first 10 integers were printed using a Java programming language loop program
structure. The program as shown in Figure 9 was tested and executed in NetBeans IDE to
make sure that it executes successfully.

 Figure 9: Loop - Java Code

Journal of Innovation, Technology and Sustainability

59 | Vol. 1, Issue 1, 2023

The tokenization of the Java program in Figure 9 reveals that the program has 13 distinct
operators (Ƞ1) with a frequency of 19 (Ν1) and 3 distinct operands (Ƞ2) with a frequency of
6 (Ν2). The Halstead metrics of the program are computation gave; Program Vocabulary is
16, Program Length is 25, Estimated Length is 52.86, Truth Length 2.11, Program Volume is
100, Program Difficulty is 13, Effort to Implement is 1300, Time to Implement is 72.22
seconds, and Bugs Delivered is equal to 0.0333. Tables 13 and 14 present a summary of these
findings.

Table 13: Operands and Operators in a Loop- Java code

Distinct Operators (Ƞ1) Frequency
(Ν1)

Distinct
Operands (Ƞ2)

Frequency
(Ν2)

= 1 i 4

< = 1 1 1

; 4 10 1

{ } 3

for() 1 Ƞ2 = 3 Ν2 = 6

+ + 1

\n 1

“ ” 1

System.out.println() 2

public static void main() 1

String [] 1

Args 1

Int 1

Ƞ1 = 13 Ν1 = 19

Journal of Innovation, Technology and Sustainability

60 | Vol. 1, Issue 1, 2023

Table 14: Halstead Results of Java Loop - Java code

4.3.2 An Implementation in a Python Programming Language

A Python simple loop program structure was developed using a FOR statement to output 10
integers starting with 1. The program as shown in Figure 10 was developed and tested in the
Colab cloud-based environment to ascertain that it executes successfully.

Figure 10: Loop - Python Code

The tokenization of the Python program in Figure 10 reveals that the program has 5 distinct
operators (Ƞ1) with a frequency of 5 (Ν1) and 3 distinct operands (Ƞ2) with a frequency of 4
(Ν2). The Halstead metrics of the program are; Program Vocabulary is 8, Program Length is
9, Estimated Length is 16.36, Truth Length 1.82, Program Volume is 27, Program Difficulty
is 3.325, Effort to Implement is 87.78, Time to Implement is 4.99 seconds, and Bugs Delivered
is equal to 0.009. Tables 15 and 16, respectively, offer an overview of these findings.

for i in range (1,11):
print(i)

Journal of Innovation, Technology and Sustainability

61 | Vol. 1, Issue 1, 2023

Table 15: Operands and Operators in a Loop - Python code

Distinct Operators (Ƞ1) Frequency
(Ν1)

Distinct
Operands (Ƞ2)

Frequency
(Ν2)

: 1 i 2

for 1 1 1

, 1 11 1

in range() 1

print() 1

Ƞ1 = 5 Ν1 = 5 Ƞ2 = 3 Ν2 = 4

Table 16: Halstead Results of Loop - Python code

4.3.3 An Implementation in a C Programming Language

NetBeans IDE was used to develop and test a loop program structure in C programming
language that outputs the first 10 integers as shown in Figure 11.

Journal of Innovation, Technology and Sustainability

62 | Vol. 1, Issue 1, 2023

Figure 11: C-Loop

The tokenization of the C program in Figure 11 reveals that the program has 14 distinct
operators (Ƞ1) with a frequency of 20 (Ν1) and 3 distinct operands (Ƞ2) with a frequency of
7 (Ν2). The Halstead metrics of the program are giving; Program Vocabulary is 17, Program
Length is 27, Estimated Length is 58.05, Truth Length 2.15, Program Volume is 110.36,
Program Difficulty is 16.31, Effort to Implement is 1799.97, Time to Implement is 100
seconds, and Bugs Delivered is equal to 0.0368. Tables 17 and 18 show the summary of these
findings, respectively.

Table 17: Operands and Operators in a Loop - C code

Distinct Operators (Ƞ1) Frequency
(Ν1)

Distinct
Operands (Ƞ2)

Frequency
(Ν2)

= 1 i 5

< = 1 1 1

{ } 2 10 1

+ + 1

; 5

, 1 Ƞ2 = 3 Ν2 = 7

%d 1

return 0 1

“ ” 1

printf() 1

\n 1

for() 1

Int 2

main() 1

Journal of Innovation, Technology and Sustainability

63 | Vol. 1, Issue 1, 2023

Ƞ1 = 14 Ν1 = 20

Table 18: Halstead Results of Loop - C code

A comparison study of the three programming languages was done to analyze their
lexicographical complexity. The complexity of each programming language in each of the
Halstead metrics is as follows ranked from highest to lowest. The result shows that C is
slightly more complex than Java programming language considering the Halstead metrics for
the Loops program structure. However, Python programming language has the least
complexity for all the 9 parameters of the Halstead metrics as summarized in Figure 12.

Journal of Innovation, Technology and Sustainability

64 | Vol. 1, Issue 1, 2023

Figure 12: Comparative Analysis of Java, Python and C with Halstead Metric

5. Conclusion and Future Works

Software complexity is one of the most important aspects that every software developer
would like to understand before choosing the programming language to use or even
developing software.

In this paper, a comparison study was done on the evaluation of software lexicographical
complexity levels of three programming languages viz Java, Python and C using Halstead
metrics. The results showed that in sequence and Loops program structures, C programming
language is the most complex programming language considering all the parameters of the
Halstead metrics, for instance, it will require the largest time to implement and more of the
programmer effort followed by Java. However, Java proved to be the most complex for
selection or branching program structures when subjected to Halsted metric, followed by C.
Python on the other hand proved to be the least difficult and also the least complex in all the
other Halstead complexity measures.

The findings of this study can help software developers to make important decisions
regarding software costing, software quality assurance, and software maintenance, among
others.

Journal of Innovation, Technology and Sustainability

65 | Vol. 1, Issue 1, 2023

Future works can focus on predicting software costs using the findings of this study. Also, in
the future researchers can consider larger program samples and compare the complexity
levels of languages in the different programming paradigms to inform on the choice of a
programming language to perform a given task.

References

Abdul Rehman Shaikh. (2020, 18 March) “Applying Halstead Metrics in Your Programs”,
https://www.academia.edu/23024048/Applying_Halstead_Metrics_in_Your_Progra
ms/ last accessed on 18 March 2020.

Abdulkareem, S. A., & Abboud, A. J. (2021, February). Evaluating Python, C++, JavaScript and
Java Programming Languages Based on Software Complexity Calculator (Halstead
Metrics). In IOP Conference Series: Materials Science and Engineering (Vol. 1076, No.
1, p. 012046). IOP Publishing.

Ahmad Johanna, and Salmi Baharom. (2017). Comparison of Software Complexity Metrics in
Measuring the Complexity of Event Sequences. In International Conference on
Information Science and Applications, pp. 615-624. Springer, Singapore.

Alfadel, M., Kobilica, A., & Hassine, J. (2017, May). Evaluation of Halstead and cyclomatic
complexity metrics in measuring defect density. In 2017 9th IEEE-GCC Conference
and Exhibition (GCCCE) (pp. 1-9). IEEE.

Antinyan Vard, Staron Miroslaw, and Sandberg Anna. (2017). “Evaluating code complexity
triggers, use of complexity measures and the influence of code complexity on
maintenance time”, Empirical Software Engineering, Vol. 22, No. 6, pp. 3057-3087.

Binanto, I., Warnars, H. L. H. S., Abbas, B. S., & Sianipar, N. F. (2018, September). Automation
processing Halstead metrics application's results. In 2018 Indonesian Association for
Pattern Recognition International Conference (INAPR) (pp. 1-4). IEEE.

Binanto, I., Warnars, H. L. H. S., Abbas, B. S., & Sianipar, N. F. (2018, September). Halstead
Metric for Quality Measurement of Various Version of Statcato. In 2018 5th
International Conference on Information Technology, Computer, and Electrical
Engineering (ICITACEE) (pp. 276-280). IEEE.

D. Y. Pawade, M. Metha, K. Shah, and J. Rathod. (2015). “Python Based Software Complexity
Calculator using Halstead Metrics”, Int. J. Adv. Found. Res. Comput. 2, no. Special Issue
(NCRTIT 2015), pp. 390-394.

Journal of Innovation, Technology and Sustainability

66 | Vol. 1, Issue 1, 2023

F. Fioravanti, P. Nesi, (2000 August 31). “A method and tool for assessing object-oriented
projects and metrics management,” Journal of Systems and Software, Volume 53,
Issue 2, Pages 111-136.

Flater, David, and David Flater. (2018). Software Science Revisited: “Rationalizing Halstead's
System Using Dimensionless Units”. US Department of Commerce, National Institute
of Standards and Technology.

Govil, N. (2020, June). Applying Halstead Software Science on Different Programming
Languages for Analyzing Software Complexity. In 2020 4th International Conference
on Trends in Electronics and Informatics (ICOEI) (48184) (pp. 939-943). IEEE.

https://www.geeksforgeeks.org/software-engineering-halsteadssoftware-metrics/last
accessed on 27 March 2020.

https://www.javatpoint.com/software-engineering-halsteads-softwaremetrics/last
accessed on 27 March 2020.

Iwan Binanto, Harco Leslie Hendric Spits Warnars, Bahtiar Saleh Abbas, and Nesti Fronika
Sianipar. (2018). “Halstead Metric for Quality Measurement of Various Version of
Statcato”, In 2018 5th International Conference on Information Technology,
Computer, and Electrical Engineering (ICITACEE), pp. 276-280. IEEE.

James Cooper. (2017). “Java Design Patterns”: A Tutorial.

Madi, O. K. Zein, S. Kadry. (2013). On the Improvement of Cyclomatic Complexity Metric, vol.
7 no. 2,

M. Madhan, I. Dhivakar, T. Anbuarasan, and Chandrasegar Thirumalai. (2017) “Analyzing
complexity nature inspired optimization algorithms using Halstead metrics.” In 2017
International Conference on Trends in Electronics and Informatics (ICEI), pp. 1077-
1081. IEEE.

Maurice Halstead. (1977), Elements of Software Science. Amsterdam: Elsevier North-
Holland, Inc. ISBN 0-444-00205-7.

Prabowo, Y. D., Warnas, H. L. H. S., Gaol, F. L., Abdurachman, E., & Soewito, B. (2018, March).
Initial research on Halstead's technique for pattern similarity relationship study.
In 2018 International Conference on Information and Communications Technology
(ICOIACT) (pp. 773-777). IEEE.

Rajib Mall. (2016). “Fundamentals of Software Engineering”, Fourth Ed., PHI Learning
Private Limited.

Journal of Innovation, Technology and Sustainability

67 | Vol. 1, Issue 1, 2023

Rodrigo Tavares Coimbra, Antônio Resende, and Ricardo Terra. (2018). “A Correlation
Analysis between Halstead Complexity Measures and other Software Measures.” In
2018 XLIV Latin. American Computer Conference (CLEI), pp. 31-39. IEEE.

Safa Omri, Pascal Montag, and Carsten Sinz. (2018)” Static Analysis and Code Complexity
Metrics as Early Indicators of Software Defects”, Journal of Software Engineering and
Applications 11, No. 04, pp. 153-166.

T Hariprasad, K Seenu, G Vidhyagaran and Chandrasegar Thirumala. (2017, May) “Software
Complexity Analysis Using Halstead Metrics”, International Conference on Trends in
Electronics and Informatics (ICEI) IEEE & 978-1-5090-4257-9.

Yu, S., & Zhou, S. (2010, April). A survey on metric of software complexity. In 2010 2nd IEEE
International Conference on information management and engineering (pp. 352-
356). IEEE.

Zuse, H. (2019). Software complexity: measures and methods (Vol. 4). Walter de Gruyter
GmbH & Co KG.

	1. Introduction
	1. Introduction
	2. Related Works
	2. Related Works
	2. Related Works
	3. Methodology
	3. Methodology
	4. Results and Discussion
	4. Results and Discussion
	4. Results and Discussion
	4.1 Computation of Lexicographical Complexity from a Sequence Program Structure
	4.1 Computation of Lexicographical Complexity from a Sequence Program Structure
	4.1.1 An Implementation in a Java Programming Language
	4.1.1 An Implementation in a Java Programming Language
	4.1.2 An Implementation in a Python Programming Language
	4.1.2 An Implementation in a Python Programming Language
	4.1.2 An Implementation in a Python Programming Language
	4.1.3 An Implementation in a C Programming Language
	4.1.3 An Implementation in a C Programming Language

	4.2 Computation of Lexicographical Complexity from a Selection Program Structure
	4.2 Computation of Lexicographical Complexity from a Selection Program Structure
	4.2
	4.2
	4.3
	4.3
	4.2.1 An Implementation in a Java Programming Language
	4.2.1 An Implementation in a Java Programming Language
	4.2
	4.2
	4.2
	4.3
	4.3
	4.3
	4.2.1 An Implementation in a Java Programming Language
	4.2.1 An Implementation in a Java Programming Language
	4.2.1 An Implementation in a Java Programming Language
	4.2.2 An Implementation in a Python Programming Language
	4.2.2 An Implementation in a Python Programming Language
	4.2.3 An Implementation in a C Programming Language
	4.2.3 An Implementation in a C Programming Language
	4.2.3 An Implementation in a C Programming Language

	4.3 Computation of Lexicographical Complexity from a Loop Program Structure
	4.3 Computation of Lexicographical Complexity from a Loop Program Structure

	4.3.1 An Implementation in a Java Programming Language
	4.3.1 An Implementation in a Java Programming Language
	4.3.2 An Implementation in a Python Programming Language
	4.3.2 An Implementation in a Python Programming Language
	4.3.3 An Implementation in a C Programming Language
	4.3.3 An Implementation in a C Programming Language
	5. Conclusion and Future Works
	5. Conclusion and Future Works
	References
	References

