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Abstract  

Plants are the backbone of human existence for they are directly depended on for food. Plant 
infections and diseases are thus a major concern. Technology can promote food production in 
several ways through the application of computer vision technology that employs image 
processing to determine several aspects. Faster and timely plant disease recognition could 
immensely aid in the early application of appropriate treatment methods that fundamentally 
reduce economic losses. The introduction of machine learning techniques in image 
classification has revolutionized digital imaging and learning systems. Presently, convolutional 
neural networks have been found to provide the most accurate results while grey level co-
occurrence is a popularly used descriptor. However, Convolution Neural Network (CNN) 
requires numerous learning iterations which lead to high computation costs whereas Grey 
Level Co-Occurrence Matrix (GLCM) cannot be used alone as a descriptor because a classifier is 
required to carry out the classification of the texture features extracted. This study proposed a 
hybrid model that combines CNN and GLCM techniques to classify plant diseases from a set of 
plant images. The research methodology used a systematic literature review and experimental 
research design. The systematic literature review was employed to determine and identify the 
existing techniques in digital plant images and the features to be used in classifying plant 
diseases. In experimentation, the study evaluated GLCM contrast, energy, and correlation 
features. The classification was carried out in three phases; 100, 150, and 200 iterations where 
the GLCM-CNN network had the best accuracy of 96.09% and F1 score of 0.8884 using energy 
texture images with 200 iterations.  
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1. Introduction  

Crop output and quality have grown significantly as a result of contemporary approaches 
and technology. To satisfy the demands of an expanding population, agricultural production 
has to increase at a faster rate. Despite technological advancements, agriculture is not 
immune to problems. The many sorts of diseases that afflict crops ever and then are one of 
the primary problems that they must almost certainly encounter. Bacteria, fungi, and other 
microorganisms cause many of these diseases. Over time, several measures to avoid plant 
diseases have been implemented. The use of pesticides on plants is one of the oldest and 
most primitive ways (Bharali, Bhuyan, and Boruah 2019). Conversely, excessive usage of 
these compounds has begun to have negative consequences, proving to be lethal to animals 
(including humans) and plants. The quest for alternatives to the utilization of excessive and 
unneeded chemicals in food has gotten a lot of attention in recent years all around the world. 

Timely and faster recognition of these diseases could immensely aid in the early application 
of appropriate treatment methods that will fundamentally reduce economic losses. Plant 
stress recognition and classification have traditionally been done by researchers. The 
recognition and classification exercise has not only been time-consuming but also, to a great 
extent subjective (Ghosal et al. 2018; Kruse et al. 2014). Research findings (Fuentes et al. 
2017; Voulodimos et al. 2018) have proposed machine learning (ML) techniques as the most 
efficient methods in image processing in several areas of study e.g. medicine, agriculture, 
language processing, and computer vision. The use of ML in agriculture has made it 
sustainable through the application of information technology in managing the farm by 
detecting, examining, and handling changes that may arise to maximize profits, easy 
maintenance, and protection of the farm resources. Improved and better decision-making on 
various aspects of the farm has been brought about (Banu 2015), for instance, by using farm 
inputs only when and where they are required e.g., fertilizers and pesticides.   

The effectiveness of machine learning (ML) has been improving over time and this has made 
it conceivable to protect and maintain the world’s food supply through smart farming. For 
all types of farms as well as different crop varieties, automated systems used to identify plant 
diseases in the leaves are efficient and precise. ML has made it feasible to manipulate and 
obtain hidden information from digital images. Deep neural networks have outperformed 
the conventional ML approaches in image classification. 

Tomatoes are the most often consumed crop daily. They are found in almost every kitchen 
in the world. Conversely, their quality and quantity suffer as a result of different types of 
diseases. Tomato plants are particularly susceptible to a variety of diseases and as a result, 
detecting and classifying these diseases is critical. This method assists farmers in identifying 
a myriad of diseases that affect their crops. This research proposes a method of classifying 
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different types of tomato leaf diseases by combining Grey Level Co-Occurrence Matrix 
(GLCM) and Convolution Neural Network (CNN).  

Grey Level Co-Occurrence Matrix and convolution neural networks have popularly been 
used in computer vision because of their great ability in extracting textural features and 
identifying different objects respectively. The texture features have extensively been utilized 
in image analysis since it has been demonstrated that it improves the effectiveness of the 
classification systems (Moya et al. 2019). However, GLCM cannot be used alone as a 
descriptor because a classifier is required to carry out the classification of the texture 
features extracted. CNN falls behind in classification accuracy (Adly and Moustafa 2016) as 
it requires a large number of learning repetitions for it to perform better (Santoni et al. 
2015). Research findings have concluded that a  modified CNN can produce improved 
classification accuracy than when used alone (Santoni et al. 2015) with fewer iterations.   

The paper unfolds as follows: section two presents relatable work in this domain, section 
three describes the methods proposed in this study, section four presents the findings, and 
Section Five concludes.   

2. Related work 

CNN has gained considerable attention in recent years. It has extensively been applied in the 
image processing domain because of its effectiveness and efficiency in classification tasks. 
Its performance has outshone the traditional ML approaches. 

A CNN model with three convolution and max-pooling layers, one flattening layer, and one 
fully connected layer was used to detect leaf diseases (Agarwal et al. 2020). The convolution 
and max-pooling layers had 3𝑥𝑥3 and 2𝑥𝑥2 filters respectively. A total of 50,000 leaf images 
from PlantVillage with 14 different crops were employed. The model achieved an accuracy 
performance of 91.2%. 

Ahmad et al. (2020) compared the performance of four pre-trained CNN models; VGG-16, 
VGG-19, Resnet, and Inception V3. The performance of the models was evaluated using two 
divergent datasets. The first dataset was from a controlled environment while the second 
one was from the field. 2364 images with four types of tomato diseases were utilized. VGG-
16 had 16 layers while VGG-19 had 19 layers. Resnet employed residual learning while 
Inception V3 data preprocessing was carried out using histogram equalization. The 
classification was conducted in two ways, using feature extraction and parameter tuning. 
The 10-fold cross-validation was used to validate the models. Inception V3 outperformed the 
other three on both datasets. 
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Salih et al. (2020) used 6202 images from PlantVillage that had six categories from which 
five had diseased and one had healthy leaf images. CNN had three blocks and the first block 
had convolution, batch normalization, activation function, and max-pooling layers. The 
second block had convolution and max-pooling layers and the third block had fully 
connected, SoftMax, and classification layers. The CNN model achieved an accuracy of 9.34. 

CNN Xception model was modified and trained using different optimization algorithms and 
their performances were evaluated (Thangaraj, Vishnu, and Kaliappan 2020).  Adaptive 
moment estimation (Adam), Stochastic Gradient Descent (SGD), and Root Mean Square 
Propagation (RMSProp) algorithms were utilized. The modified xception model had feature 
extraction and classification components. The feature extraction component had 
convolution layers, pooling layers, and rectified linear units while the classification 
component had a global average pooling layer and SoftMax classifier. Adam had a better 
performance of 99.55% with the lowest loss value outperforming SGD and RMSProp which 
had 99.01% and 81.77% respectively. 

Pre-trained AlexNet and VGG16 models were modified to classify seven classes of tomato 
leaves images that had six diseased and one healthy class (Rangarajan, Purushothaman, and 
Ramesh 2018). A total of 13262 images from PlantVillage were segmented and augmented 
and used for training. Three layers of each model were modified and transfer learning was 
utilized during the training. AlexNet and VGG16 achieved an accuracy level of 97.49% and 
97.23% respectively.  Zhao et al. (2021) utilized deep CNN with 101 layers. The model 
integrated attention mechanism which included residual blocks and attention extraction 
modules. The study used 4585 images acquired from PlnatVillage with ten categories. The 
accuracy performance of the model was 96.81%. 

The existing literature offers valuable perspectives on the various techniques. CNNs have 
yielded promising results, but only after the input data has been preprocessed. Image data 
preprocessing takes time and might result in the loss of essential data. In this article, CNN is 
utilized to classify ten classes of tomato leaf images in which nine classes have diseased and 
one class has healthy images. The study combines GLCM and CNN approaches in learning 
and classifying the images in a dataset that has not been preprocessed to examine the 
performance of CNN with a reduced number of layers and fewer iterations. 

3. Methodology 

3.1 Data collection 

The data used in this study was collected from an online image dataset from PlantVillage. 
The dataset had already been divided into training and testing samples. The samples had 
nine types of tomato leaf diseases with each disease having 1000 and 100 images for training 
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and validation respectively. The diseases were bacterial spot, early blight, late blight, leaf 
mold, Septoria leaf spot, spider mite, target spot, tomato mosaic virus, and tomato yellow 
leaf curl virus. It also contained a set of healthy tomato leaves with 1000 and 100 images in 
training and validation correspondingly. The dataset had a total of 11,000 images.  

3.2 Data pre-processing 

There was no pre-processing performed on the image dataset gathered before training the 
model. The built proposed model was fed with raw images as downloaded from PlantVillage. 

3.3 GLCM  

The Grey Level Co-occurrence Matrices (GLCMs) were first proposed by Haralick in 1973 
(Haralick, Dinstein, and Shanmugam 1973) as a texture descriptor. It continues to be widely 
used in texture classification which determines the relationship between pairs of pixels in 
an image through computation. It is a presentation of the frequency of occurrences of several 
combinations of pixel-grey intensities in an image. It gives the information regarding the 
texture of the image. 

It contains columns and rows representing a series of potential values of the image. GLCM 
considers the spatial relationship  (∆𝑥𝑥, ∆𝑦𝑦) of two pixels with grey levels at a given distance 
𝑑𝑑 and orientation angle 𝜃𝜃. GLCM comprises information regarding pixel points with the same 
grey intensity values (Ding 2017). The textural features are obtained from the computation 
of the grey level co-occurrence matrices generated. Technically, GLCM uses a distinctive 
matrix function to establish a joint occurrence matrix of the image data (Hall-Beyer 2017) 
The textural features intuitively present quality features on pixel distribution in the texture 
like regularity, coarseness, and smoothness (Cavalin and Oliveira 2018). Over the years, 
rather than using GLCM independently, it has been combined with other techniques.  

The first step was to convert the images into greyscale. A greyscale is an image whose every 
pixel is a representation of the intensity information of the amount of light it carries. The 
grey scaling process involves the conversion of the tone of the original image to that which a 
computer can use. This step is necessary since the original image values of pixels have to be 
scaled to an appropriate range of values. It plays the role of filtering noise which decreases 
the GLCM sparsity. Texture analysis using GLCM was performed on the images converted 
into greyscale to acquire contrast, energy, and correlation texture parameters.  

A GLCM was generated by putting together the incidences of a grey value of two pixels (𝑖𝑖, 𝑗𝑗) 
separated by the offset (∆𝑥𝑥, ∆𝑦𝑦) of the greyscale image. The GLCMs were generated from four 
different offset angles, 00, 450, 900, 𝑎𝑎𝑎𝑎𝑎𝑎 1350. The offsets represent the connection 
between the central pixel and the immediate pixels in the four directions. The results of the 
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GLCM elements obtained from the offsets were then summed up to get one direction-
invariant GLCM. The GLCM constructed from the summation is un-normalized, which 
calculates the frequency of occurrence of grey values of each pair of pixels as neighbours.   

Uniform quantization was used to determine the dimension of the GLCM image by giving the 
maximum number of grey tones. A uniform quantization technique was applied because it is 
the easiest to implement   Quantization helps reduce noise-induced effects to some degree 
by merging grey intensities that are similar within the image. The level of quantization of the 
GLCM was set to 256 since the intensity of the central pixel and that of its neighbour pixel 
ranged between 0 and 255 and hence, the dimensions of the generated GLCM were set to 
256 𝑥𝑥 256.  

Finally, each GLCM constructed was normalized to ensure that they have similar dimensions. 
Hu and Zheng (2019) note there is no given theoretical evidence that yields optimum 
classification through the use of certain GLCM features. Consequently, it is upon the 
researcher to establish the features that suit their studies. So, this study employed contrast, 
energy, and correlation features after GLCM normalization. The generated GLCM images 
were then fed into the CNN network as the input. Once fed into the model, the CNN reduced 
the image dimensions to a size of 128x128. 

1. Contrast gives the number of local variations between the reference pixel and its 
neighbour within the entire image. It uses the GLCM weighted average values. The 
frequency of occurrence of a pair of pixels constructs the weight. An increase in weight 
associated with commonness yields a textured aspect that rises concerning the order 
and vice versa.  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗(𝑖𝑖 − 𝑗𝑗)2𝑛𝑛𝑔𝑔−1
𝑖𝑖,𝑗𝑗=0     (Eq. 1)  

Where i and j represent the spatial coordinates of the GLCM matrix function 𝑃𝑃(𝑖𝑖, 𝑗𝑗) 
whereas 𝑛𝑛𝑔𝑔 is the grey tone.  

2. Angular second moment (ASM) or energy utilize every 𝑃𝑃𝑖𝑖𝑖𝑖  as a weight value. 
Homogeneity brings about high values in energy. Energy is also known as uniformity 
and it measures the intensity of grey tones in the GLCM and textural uniformity. Energy 
gives the aggregate of the squared parts in GLCM.  

  𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗2
𝑛𝑛𝑔𝑔−1
𝑖𝑖,𝑗𝑗=0       (Eq. 2)  

Where i and j represent the spatial coordinates of the GLCM matrix function 𝑃𝑃(𝑖𝑖, 𝑗𝑗) 
whereas 𝑛𝑛𝑔𝑔 is the number of defined grey tones in the quantized image 
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3. Correlation attribute provides the amount of grey level linear dependences of 
neighbouring pixels in the image. correlation among pixels implies that there is a linear 
association between two adjacent pixels. A big correlation in the texture implies a high 
pixel relationship predictability.  

  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∑ (𝑖𝑖,𝑗𝑗)𝑃𝑃(𝑖𝑖,𝑗𝑗)−𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗
𝑛𝑛𝑔𝑔−1
𝑖𝑖,𝑗𝑗=0

𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
    (Eq. 3)  

Where i and j represent the spatial coordinates of the GLCM matrix function 𝑃𝑃(𝑖𝑖, 𝑗𝑗); 𝜇𝜇 is 
the GLCM mean whereas 𝑛𝑛𝑔𝑔 is the number of defined grey tones in the quantized image 

3.4 CNN Structure 

Convolution neural networks are a class of multilayer neural systems, which are trained by 
the use of backpropagation.  CNNs are made of three fundamental components; convolution 
layers, pooling layer, and rectified linear units (ReLUs) which serve as the activation 
functions. A CNN can have several convolution and pooling layers. Every convolution layer 
is succeeded by a max-pooling layer, after which fully connected layers follow. Most of the 
computation in CNN happens in the convolution layer and it is the first layer that the image 
goes through after input. Inside a convolutional layer, some filters inspect a segment of an 
image. (Beysolow II 2017). The product of the output generated is a feature map and will be 
used in the next layer. During the forward pass, every filter is convolved using input that 
generates a map. When all these maps are stacked, they produce the output of this layer. 

The pooling layer is placed in between the successive convolutional layers. This layer “pools” 
the feature maps generated in convolution layers into an image. The pooling layer reduces 
the complexity of the model thereby enhancing spatial representation by effectively carrying 
out dimensionality reduction through subsampling (Beysolow II 2017; Voulodimos et al. 
2018). The layer does not impact the dimension of the depth of the volume. The down 
sampling (subsampling) results in simultaneous information loss. In any case, such a loss is 
valuable for the system because the size reduction results in reduced computational 
overhead for the succeeding layers of the system. Furthermore, it prevents overfitting. Max 
pooling and average pooling are the most ordinarily utilized functions. Non-linearity layer 
consists of nodes that employ several activation functions which present nonlinearities that 
make multi-layered systems desirable. Rectified Linear Units (ReLU) are the most preferable 
functions since they enhance faster training of the neural networks. The fully connected layer 
comes after the convolutional, pooling, and nonlinearity layers which are user-determined. 
There is perhaps at least one fully connected layer that implements high-level reasoning by 
taking each activation of the preceding layer and linking them to every neuron in the current 
layer (Bhandare et al. 2016). The images that enter this layer are significantly smaller than 
the initial inputs because of the image reductions stated in the previous operations. The 
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reduced images are then scanned and should match every feature map and transform every 
one of the qualities given into a list of qualities. The fully connected layer finally transforms 
the two-dimensional feature maps into a one-dimensional feature vector. The resulting 
vector can either be served into a specific number of classifications or be considered for 
further processing. 

The proposed CNN model structure is comprised of three convolutional layers, two max-
pooling layers, and two fully connected (dense) layers. The first convolutional layer had 32 
filters the second layer had 16 filters and the third layer had 8 filters. The size of each filter 
in all three convolutional layers was 3 𝑥𝑥 3. Each of these layers used rectified linear unit 
(ReLU) activation function. Each convolutional layer was succeeded by a max-pooling layer. 
A 2 𝑥𝑥 2 max-pooling kernel size pooled the feature maps generated by the convolution layer 
and then fed them as input to the succeeding convolution layer. The convolution, activation, 
and max-pooling process was repeated for all three convolution layers as shown in Table 1. 
The kernels in the convolution layer and max-pooling moved with a 1 𝑥𝑥 1 stride.  

After the third convolutional layer, the network was flattened to a one-dimensional feature 
vector. Flattening was performed on the output from the convolutional layers to generate a 
distinct long feature vector. The flattening layer was then followed by two dense layers 
where one dense layer served as the final classification layer with a SoftMax activation 
function used for classification since the class model was categorical. SoftMax can be suitably 
applied in multiclass classification problems that require more than two labelled classes. 
SoftMax gives probability distribution to every class and then sums up these probabilities to 
1.0. In doing so, this helps to enhance the training convergence faster than it normally would.  

To prevent the network from overfitting, the dropout technique was employed in the dense 
layer. The network set the drop probability to 0.5. The batch size was set to 64 with 50, 100, 
and 200 epochs with ten steps per epoch. This meant that 64 samples were passed through 
the network 50, 100, and 200 times. The adaptive moment estimation (Adam) method was 
utilized as the optimizer for the network with a learning rate of 0.001. It is a commonly used 
optimization algorithm as its implementation is straightforward. Computationally, the Adam 
optimizer is very effective and can effectively deal with large sets of data and parameters.  

Table 1: Model architecture 

Layer (Type) Output Shape Param # Filter 
size 

Activation 
Function 

Convolution (Conv2D) 1 None, 126, 126, 
32 

896 3 x 3 ReLU 

Max_Pooling (MaxPooling 2D) 
1 

None, 63, 63, 32 0 2 x 2 - 
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3.5  Training Environment 

The training and validation were carried out on Nvidia GeForce GTX 1080 running on 64-bit 
Windows 10 operating system. The model was developed using Python 3.7 in Anaconda 4 
with Spyder Notebook as the main Python Integrated Development Environment (IDE). The 
CNN network was built on Keras on a TensorFlow graphics processing unit (GPU) backend. 
Keras running on TensorFlow backend enables the enhancement of fast experimentation. 
Other important libraries used included NumPy, skimage, sklearn, greycomatrix, and 
greycoprops for the implementation of GLCM. Most of the parameters like kernel size, batch 
size, learning rate, number of epochs, and stride dimension were all established through a 
trial-and-error approach.  

Table 2: Hardware/Software Characteristics 

Hardware/Software Specifications 

Operating System Windows 10 (64-bit) 

Environment Python, Keras (TensorFlow) 

Graphics (GPU) Nvidia GeForce GTX 1080 

Processor (CPU) Intel Core i7, 3.6GHz 

Graphics RAM Type GDDR5X 

RAM Memory 32 GB 

Hard Disk Memory 2TB 7200RPM + 512GB SSD 
 

Convolution (Conv2D) 2 None, 61, 61, 16 4624 3 x 3 ReLu 

Max_pooling (MaxPooling 2D) 
2 

None, 30, 30, 16 0 2 x 2 - 

Convolution (Conv2D) 3 None, 28, 28, 8 1160 3 x 3 ReLu 

Max_Pooling (MaxPooling 2D) 
3 

None, 14, 14, 8 0 2 x 2 - 

Flatten None, 1568 0 - - 

Dense 1 None, 128 200832 - ReLu 

Dropout None, 128 0 - - 

Dense 2 None, 10 1290 - SoftMax 
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4. Results and Discussion   

The experimental validation was conducted in two modes; using CNN and GLCM-CNN. These 
are two networks whose performance was compared. The first mode of classification used 
the original CNN network while the second applied the GLCM-CNN network. The aim of 
performing classification with the two approaches was to establish and evaluate the 
performance of the proposed model and then compare it with the CNN network using similar 
datasets. All instances of the image dataset were used for both modes of classification.  

In the first mode, the CNN network was fed with the raw downloaded RGB image dataset 
from PlantVillage. The second mode involved passing the images through GLCM first. 
Consequently, the GLCM-generated images served as input data into the CNN, forming the 
GLCM-CNN network. The GLCM images’ texture features were then extracted from the raw 
RGB images. For both modes, the classification process was performed three times. This 
depended on the number of iterations per classification. Round one had 50 iterations, round 
two had 100 iterations and round three had 200 iterations. For all classifications, the 
networks used categorical classification modes.  

The CNN network had an overall best accuracy performance of 94.66% for 200 iterations 
while GLCM-CNN had 96.09% for 200 iterations using energy texture images. Table 3 shows 
the performance of the two networks using different numbers of iterations with accuracy 
percentage as a unit of measure. GLCM-CNN contrast had an accuracy of 95.89% for 200 
iterations which was higher compared to CNN. The accuracy levels for both classifiers were 
compared. In both cases, GLCM-CNN generally performed better in all iterations compared 
to CNN. However, correlation had the lowest performance with 91.88% for 200 iterations. 

In all the classification rounds, the training and validation losses started at the peak and 
decreased as the number of iterations increased. They however fluctuated in the first half of 
iterations before dropping consistently until the end. Conversely, the training and validation 
accuracies increased correspondingly in the classification for both networks. Both networks 
attained the highest validation accuracy and lowest validation loss during the classification 
with 200 iterations. 

Table 3: Classification accuracy for CNN and GLCM-CNN 

Number of 
iterations 

CNN GLCM-CNN 

Contrast Energy Correlation 

50 78.73 90.49 91.08 84.60 

100 86.86 93.24 94.58 87.12 

200 94.66 95.89 96.97 91.88 
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The F1 score for GLCM-CNN and CNN was fairly consistent in all rounds of classification since 
the variations were very small. On average CNN had an F1 score of 0.8770 while GLCM-CNN 
had an average of 0.8763. Table 4 shows the F1 score performance of the CNN and GLCM-
CNN networks. CNN attained the highest F1 score of 0.8801 during the classification with 
100 iterations while GLCM-CNN achieved the highest F1 score of 0.8884 with energy in the 
classification with 200 iterations. The classification with 100 iterations and correlation 
recorded the lowest score of 0.8649. In all three classification rounds, contrast had an 
average score of 0.8754, while energy and correlation had 0.8801 and 0.8735 respectively.  

Table 4: F1 score values for CNN and GLCM-CNN networks 

Number of iterations CNN GLCM-CNN 

Contrast Energy Correlation 

50 0.8732 0.8671 0.8729 0.8742 

100 0.8801 0.8803 0.8790 0.8649 

200 0.8776 0.8787 0.8884 0.8815 
 
The primary objective of the research was to develop a model that can effectively recognize 
and classify ten classes of the tomato plant which included nine diseased and one healthy 
leaf image. The experiment was conducted using the PlantVillage image dataset that had 
already been split into training and validation sets. Based on an accuracy performance 
comparison with the original CNN, GLCM-CNN had a better performance of 96.09% using 
energy images with 200 iterations. CNN networks are known to perform better with an 
increasing number of iterations. As can be seen from the results, the performance of CNN 
improved with an increased number of iterations. With 50 iterations, CNN had its poorest 
performance of 78% accuracy while the proposed model outperformed it with an accuracy 
of 90.49%, 91.08%, and 84.60% for contrast, energy, and correlation images respectively. 
The GLCM-CNN model had a good performance with only 50 iterations and it successfully 
achieved its goal of effectively identifying and classifying plant images with few iterations. 

The image dataset used was highly skewed about training and validation sets they had 1000 
and 100 images respectively. The unevenness in the class image distribution discourages on 
only focusing on accuracy as a metric since accuracy works best with a balanced class. This 
implies that relying on accuracy alone may not give the correct performance of the model 
because accuracy is maximized when false negatives and false positives have the cost. 
Skewness in class data can make a classifier achieve a low misclassification rate by simply 
selecting the majority training sample. As a result, the F1 score which is viewed as a better 
metric when working with imbalanced data was used to assess the performance of the 
model. CNN had an F1 score of 0.8763 while GLCM-CNN had an average score of 0.8770. The 



Journal of Innovation, Technology and Sustainability 
 

39 |   Vol. 1, Issue 1, 2023 
 

F1 score for the two models is almost similar which was a good performance since a score of 
0 is the poorest while 1 is a perfect score. Comparing these scores with the accuracy 
achieved, the proposed model performed well implying that the number of false negatives 
and false positives during the classifications was low.  

5. Conclusion and Future Work 

The conclusion drawn from the results encourages using GLCM-CNN in classifying tomato 
plant leaf diseases and it consequently fulfills the research objectives and answers the 
research questions. The use of raw images which were not pre-processed made the model 
more efficient enabling it to work better in the recognition and classification of new data. 
The accuracy and F1 score values indicate that the model performed well given that the 
images were used raw. 

Finally, number of epochs is the most significant factor that determines the accuracy and 
efficiency of the model. The number of epochs refers to how many iterations the model takes 
to learn the entire data set. Research studies have not specified the number of epochs a 
model ought to be trained with, although it is apparent that the proposed model learned 
more as it was trained more and more with different iterations.  

To get a more accurate performance of the findings of this study, the model can be applied 
to different types of crops in a large and complex real-world setting. Furthermore, no pre-
processing was required to refine the input of the approach utilized in this research. 
Therefore, in the future, if adequate processing speed is available, a huge number of datasets 
can be added to do analysis. The process of recognizing plant diseases can further be 
enhanced to include the analysis of several parts of the plant and different types of leaves. 
The neural network system may be improved more to consider dataset scalability and 
additional environmental diversities, reducing the size and complexity of the deep model for 
small machines. The suggested GLCM-CNN technique may also be evaluated with other 
parameters such as three-dimensional GLCM. 
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